

bc635PCI-V2 PCI Time and Frequency Processor

Summary

The Microchip bc635PCI-V2 timing module provides unparalleled precise time and frequency to the host computer and peripheral data acquisition systems. Time is typically acquired from time code signals such as IRIG B.

Central to the operation of the module is a disciplined TCXO 10 MHz oscillator that can provide the timing module's 100-nanosecond clock. Current time (days to 100 ns) can be accessed across the PCI bus with no PCI bus wait states, which allows for high-speed time requests. The selected on-board or off-board 10 MHz oscillator drives the module's frequency and time code generator circuitry. If the input reference is lost, the module will continue to maintain time (flywheel) based on the selected 10 MHz oscillator's drift rate. If power is lost, a battery-backed Real-Time Clock (RTC) is available to maintain time.

Extensive time code generation and translation are supported. The generator outputs either IRIG A, B, G, E, IEEE® 1344, NASA 36, XR3 or 2137 in both Amplitude Modulated (AM) and DC Level Shift (DCLS) formats. The translator reads and may be used to discipline the 10 MHz oscillator to either the AM or DCLS format of IRIG A, B, G, E, IEEE 1344, NASA 36, XR3 or 2137 time codes.

The module also has a state-of-the-art Direct Digital Synthesizer (DDS) rate synthesizer capable of 0.0000001 PPS to 100 MPPS. The module may also be programmed to generate a single interrupt at a predetermined time based on a time compare (strobe). An event time capture feature provides a means of latching time of an external event.

A key feature of the bc635PCI-V2 is the ability to generate interrupts on the PCI bus at programmable rates. These interrupts can be used to synchronize applications on the host computer as well as signal-specific events.

KEY FEATURES

- IRIG A, B, G, E, IEEE 1344, NASA 36, XR3 and 2137 time code inputs and outputs
- Simultaneous AM and DCLS time code inputs and outputs
- 100 ns clock resolution for time requests
- Programmable << 1 PPS to 100 MPPS DDS rate synthesizer output/interrupt
- 1, 5 or 10 MPPS rate generator output
- 1 PPS and 10 MHz inputs
- Three external event time capture/interrupts
- External event time capture/interrupt
- Programmable time compare output/interrupt
- Zero latency time reads
- Battery-backed RTC
- PCI local bus operation
- Universal signaling (3.3V or 5.0V bus)
- CE RoHS compliant
- Linux and Windows software drivers/SDKs included

The external frequency input is a unique feature allowing the time and frequency of the bc635PCI-V2 to be derived from an external oscillator that may also be disciplined (DAC voltage controlled) based on the selected input reference. The module may be operated in generator (undisciplined) mode where an external 10 MHz from a Cesium or Rubidium standard is used as the frequency reference. This creates an extremely stable PCI-based clock for all bc635PCI-V2 timing functions.

The bc635PCI-V2 automatically supports both 3.3V and 5.0V signaling of the PCI bus. Integration of the module is easily facilitated with optional drivers for Windows® or Linux®.

www.savitritelecom.com

Precision Time and Frequency in the PCI Form Factor (100-Nanosecond Precision)

Inputs

- AM time codes
- DCLS time codes
- External events (3x)
- 10 MHz
- 1 PPS
- GPS (bc637PCle model)

Outputs -

- AM time codes
- DCLS time codes
- Programmable alarm
- (strobe/time compare)
- <<1 PPS to 100 MPPS rates
- 1PPS
- 1, 5 or 10 MPPS
- Oscillator control voltage

Over the PCI Bus

- Precise time
- Event interrupts
- Alarm interrupts (time compare/strobe)
- Programmable interrupt rates
- Configuration and control

Reading the Precise Time

The bc635PCI-V2 provides precise time on request and extremely fast responses to host applications. This request for time is made using the included SDK software functions. Time can be provided in binary or decimal form.

A Multitude of Time Codes

The bc635PCI-V2 has the widest time code input and output support available in any bus-level timing card. Support is available for 30 different time codes including IRIG A, B, G, E, IEEE 1344, NASA 36, XR3 and 2137 in AM and DCLS formats.

Measure External or Internal Events

Measure the exact time up to the occurence of three independent external events occur. Bus interrupts instantly notify the CPU that the measurements are made and waiting. Similarly, host application-generated interrupts to the bc635PCI-V2 card over the bus can be precisely time stamped for precise host application-based processes.

Flexible Rate Generation

The DDS on board bc635PCI-V2 can be programmed to generate rates up to 100MPPS or as little as once every 115 days. These rates are available as timing signal outputs or as interrupts on the bus. The rate adjustment resolution is as small as 1/32 Hz

www.savitritelecom.com

Frequency Outputs

Precise clocks are excellent sources of frequency outputs. The bc635PCI-V2 offers 1, 5 or 10 MPPS outputs directly from the steered internal oscillator of the clock.

External Frequency Inputs and DAC Control

The external frequency input is a unique feature that allows the time and frequency of the bc635PCI-V2 to be derived from an external oscillator such as a 10 MHz Cesium or Rubidium standard. This creates an extremely stable PCI-based clock for all bc635PCI-V2 timing functions. For closed loop control, an external oscillator may be disciplined using DAC voltage control output from the bc635PCI-V2.

Time Compare/Strobe/Alarm

A useful feature of any precise clock is the ability to notify when a particular time is reached (like an alarm clock). When the preset time precisely matches the actual time, an external signal and an interrupt to the bus are instantly generated, signaling an application that point in time has just occurred.

Over-the-Bus Features

Beside from precise time stamps, the bc635PCI-V2 can provide very precisely timed interrupts on the bus at fixed rates, predetermined times, or to signal an event has occurred on the card. These interrupts can be integrated into user applications requiring more deterministic behavior or application synchronization with other computers. Similarly, user applications can use interrupts as markers in time and later retrieve exactly when the interrupt occurred.

Configuration and Control

The bc635PCI-V2 includes easy-to-use programs to easily configure the card and validate operations. This software is also included with the SDKs and driver software.

PCIe Card Integration Made Easy with Included SDKs and Drivers

Windows, Linux, and Solaris SDKs Speed PCIe Integration

The PCI card includes standard full-featured software development kits, speeding the integration of Microsemi PCIe cards into any application.

Using an SDK is an easy-to-integrate and highly reliable alternative to writing lower-level code to address a card's memory registers directly with just a driver. The function calls and device drivers in the SDKs make interfacing to a Microsemi PCI card straightforward and help keep the software development focused on the end application.

SDKs Save Time and Money

Programmers find the SDK an invaluable resource in accelerating the integration of Microsemi PCI cards into applications, saving both time and money. The SDK functions address each Microsemi PCIe timing card feature, and the function names and parameters provide insight into the capability of each function.

By using the SDK, one can leverage Microsemi's timing expertise and confidently integrate a Microsemi PCIe card into your application.

License-Free

Distribution of embedded Microsemi software in customer applications is royalty free.

Driver Comparison

Windows SDK and Driver

- Windows XP/Vista/7/10
- Windows Server 2003/2008/2019
- 32- and 64-bit support
- Kernel mode driver
- Code examples
- Test application program
- Complete documentation
- Timekeeping utility program

The Windows SDK for bc635PCI cards include a Windows XP/Vista/Server/7/10 kernel mode device driver for the 32- and 64-bit PCI interface. The SDK includes .h, .lib, and DLL files to support both 32- and 64-bit application development.

The target programming environment is Microsoft Visual Studio (Microsoft Visual C++ V6.0 or higher). Both Visual C++ 6.0 and Visual Studio 2008 project files are supplied with the source code

Also included is Microsemi's bc637PClcfg application program that can be used to ensure proper operation of the PCl card, and the TrayTime application that allows the user to update the system clock in which the card is installed. Source code for these programs and smaller example programs are included.

Minimum System Requirements

Operating System

- Windows XP/Vista/7/10
- Windows server 2003/2008

Hardware

PC-compatible system with a Pentium or faster processor

Memory 24 MB

Development Environment Microsoft Visual Studio (Visual C++) 6 or higher

Linux SDK and Driver

- Linux kernel up to 5.7.1
- 64-bit kernel support
- Code examples
- Test application program
- Complete documentation

The Linux SDK for bc635PCI-V2 cards includes PCIe kernel mode device drivers for 64-bit kernels, an interface library accessing all bc635PCI-V2 features, and example programs with the source code.

The target programming environment is the GNU compiler collection (GCC) and the C/C++ programming languages.

Also included is Microsemi's bc63xPClcfg application program, which ensures proper operation of the PCle card in the host computer. The example program includes sample code, exercising the interface library, and conversion examples of the ASCII format data objects passed to and from the device into a binary format suitable for operation and conversion. The example program is developed using discrete functions for each operation, allowing the developer to copy any useful code and use it in their own applications.

Minimum System Requirements

Operating System

Linux kernel 5.7.1 or lower

Hardware x86 processor

Memory 32 MB

Development Environment GNU GCC recommended

Windows and Linux SDK Function Reference • bcReqOtherData

Note: For complete list of functions, see the manual.

Basic Time and Frequency Processor (TFP) Functions

- bcStartPCI/bcStopPCI Opens/closes underlying device laver. bcStartInt/bcStopInt Starts/stops the interrupt thread to signal interrupts. bcSetInt/bcReqInt Enables/returns enabled interrupt. bcShowInt Interrupt service routine. bcReadReg/ Returns/sets requested register contents. bcWriteReg. Returns/sets requested dual port bcReadDPReg/ RAM register contents. bcWriteDPReg bcCommand Sends SW reset command to board. bcSetHbt Reads/sets TFP major time in bcReadBinTime/ binary format. **bcSetBinTime** Reads/sets TFP major time in BCD bcReadDecTime/ format. **bcSetDecTime** bcRegTimeFormat Returns selected time format. bcSetTimeFormat Sets the major time format to binary or grouped decimal. bcReqYear/bcSetYear Returns/sets year value. bcSetYearAutoIncFlag Included for backward compatibility to the bc635/637PCI-U card. bcSetLocalOffsetFlag Enables or disables local time offset in conjunction with bcSetLocOff. bcSetLocOff Sets board to report time at an offset relative to UTC. bcSetLeapEvent Inserts or deletes leap second data (in non-GPS modes) bcSetMode Sets TFP operating mode. bcSetTcIn Sets time code format for time bcSetDac code decoding mode bcSetGain bcSetTcInEx Sets time code and subtype for time code decoding mode. bcSetTcInMod Sets time code modulation for time code decoding mode. bcReqTimeData Returns selected time data from the board. Returns selected time code data bcReqTimeCodeData from the board Returns selected time code and bcReqTimeCodeDataEx bcSetGenOff subtype data from the board.
- Returns selected data from the board bcReqVerData Returns firmware version data from the board. Returns board serial number. bcRegSerialNumber bcRegHardwareFab Returns hardware fab part number. bcReqAssembly Returns assembly part number. bcReqModel Returns TFP model identification. bcReqTimeFormat Returns selected time format. bcReqRevisionID Returns board revision. **Event Functions** bcReadEventTime Latches and returns TFP time caused by an external event bcReadEventTimeEx Latches and returns TFP time caused by an external event with 100 ns resolution. Sets a user programmable periodic output. bcSetPropDelay Sets propagation delay compensation. bcSetStrobeTime Sets strobe function time. bcSetDDSFrequency Sets DDS output frequency. bcSetPeriodicDDSSelect Selects periodic or DDS output. bcSetPeriodicDDSEnable Enables or disables periodic or DDS output. bcSetDDSDivider Sets DDS divider value. bcSetDDSDividerSource Sets DDS divider source. bcSetDDSSyncMode Sets DDS synchronization mode. bcSetDDSMultiplier Sets DDS multiplier value. bcSetDDSPeriodValue Sets DDS period value. bcSetDDSTuningWord Sets DDS turning word value. **Oscillator Functions** bcSetClkSrc Enables or disables on-board oscillator Sets oscillator DAC value. Modifies on-board oscillator frequency control algorithm. bcRegOscData Returns TFP oscillator data. **Generator Mode Functions** bcSetGenCode Sets time code generator format. bcSetGenCodeEx Sets time code and subtype generator format.
 - Sets an offset to the on-board timecode generation function.

GPS Mode Functions

 bcGPSReq/ bcGPSSnd 	Returns/sends a GPS receiver data packet.
• bcGPSMan	Manually send and retrieve GPS receiver data packets.
 bcSetGPSOperMode 	Sets the GPS receiver to function in static or dynamic mode.
 bcSetGPSTmFmt 	Sets TFP to use GPS or UTC time base.
Real-Time Clock (RTC) Funct	ions

Real-Time Clock (RTC) Functions

• bcSyncRtc	Synchronizes RTC to current TFP time.
 bcDisRtcBatt 	Sets RTC circuit and battery to disconnect after power is turned off.

Backwards Compatibility Provides

Seamless Migration Paths

The PCI-based bc635 cards have long product lifecycles since the first introduction of PCI timing cards in the mid 1990s. To preserve the customer's time and money investments in integrating bc635PCI cards into their systems, Microchip has maintained the bc635PCI cards' existing features and software interface while adding new features and keeping their bus signaling and form factors up to date. This commitment to backward compatibility and current bus architectures assures the bc635PCI cards integrate smoothly into any workstation currently available in the market with little to no impact on customer application software.

PCI Card Developments

- Mid-1990s
- . First PCI timing card introduced

2003 3.3V and 5.0V universal signaling backward

- **Electronics updated** backward compatibility retained
- 2010
- **Electronics updated** backward compatibility retained

www.savitritelecom.com

Optional Accessories Speed, Test, and Simplify Integration

Breakout cables with BNC connectors simplify access to the in and out timing signals of the PCI card. These labeled cables mitigate the need to create special cables during project development and ensure that the correct timing signals are being accessed.

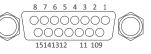
For more integrated rack mount systems that require easy access to timing signals, the 1U patch panel and high-frequency signal breakout exposes all available signals. The panel provides an organized and professional appearance to the external timing I/O of the PCI card functions. The 1U panel fits with standard or half rack size chassis. The high-frequency breakout adapter exposes the high-frequency signal as well as the external DC DAC control signal and ground.

Input/Output Signals D to BNC Connector Breakout Cables

Timing Input/Output Breakout Cable and Patch Panel BNC Map	D to 5-BNC (BC11576-1000)	D to 5-BNC BC11576-9860115	D to 6-BNC	Patch/Breakout
Outputs				
Time code (AM)	•	•	•	•
Time code (DCLS)			•	•
1, 5, or 10MPPS				•
Periodic/DDS				•
Strobe				•
1PPS	•	•	•	•
Oscillator control voltage				•
Inputs				
Time code (AM)	•	•	•	•
Time code (DCLS); event2				•
External event1	•	•	•	•
External 1PPS; event3		•	•	•
External 10 MHz				•

1U Patch Panel of Input/Output and High Frequency Signals for Standard Rack Mount Size Chassis

Specifications


-		
Electrical		
Real-time clock		
Bus request resolution	100 ns BCD	
Latency	Zero	
Major time format	Binary or BCD	
Minor time format	Binary 1 µS to 999.999 mS	
Synchronization sources	Time code, 1PPS	
Time code translator (inputs)	
Time code formats	IRIG A, B, G, E, IEEE	
	1344, NASA 36, XR3, 2137	
Time accuracy	<5 µS (AM carrier frequencies	
	1 kHz or greater)	
	<1 µS (DCLS)	
AM ratio range	2:1 to 4:1	
AM input amplitude	1 V _{pp} to 8 V _{pp}	
AM input impedance	>5 kΩ	
DCLS input, event2	5 V HCMOS >2 V high,	
	<0.8 V low	
Time code generator (output		
Time code generator (output	IRIG A, B, G, E, IEEE 1344,	
AM ratio	NASA 36, XR3, 2137 3:1 ±10%	
AM amplitude	$3.5 V_{pp} \pm 0.5 V_{pp}$ into 50Ω	
DCLS amplitude	5 V HCMOS, >2 V high,	
	<0.8 V low into 50 Ω	
Timing functions (outputs ar	e rising edge on time)	
DDS rate synthesizer		
Frequency range	0.0000001PPS to 100MPPS	
Output amplitude	5 V HCMOS, >2 V high,	
	<0.8 V low into 50 Ω, square	
	wave	
Jitter	<2 nS p-p	
Legacy pulse rate synthesize	r (heartbeat, aka periodic)	
Frequency range	<1 Hz to 250 kHz	
Output amplitude	5 V HCMOS, >2 V high,	
	<0.8 V low into 50 Ω, square	
	wave	
Time compare (strobe)		
Compare range	1 µs through days	
Output amplitude	5 V HCMOS, >2 V high,	
	<0.8 V low into 50 Ω, 1 μs	
	pulse	
1PPS output	5 V HCMOS, >2 V high,	
	<0.8 V low into 50 Ω, 60 μs	
	pulse	
1PPS input	5 V HCMOS, >2 V high,	
n romput	-	
Extornal exections	<0.8 V low, 270 Ω	
External event input	5 V HCMOS, >2 V high,	
	<0.8 V low, , 270 Ω zero latency	
External 10 MHz oscillator	Digital 40% to 60% or sine wave, V0.5 Vpp to 8 Vpp,	
	wave, vo.s vpp to 8 vpp, >10 kΩ	
Oscillator control voltage	Jumper selectable 0 VDC-5 VDC or	
	0 VDC-5 VDC or 0 VDC-10 VDC into 1 kΩ	

On-board disciplined oscilla	ator	
Frequency	10 MHZ	
1, 5, or 10 MPPS output	5 V HCMOS, >2 V high, <0.8 V low into 50 Ω	
Stability		
Standard TCXO	5.0×10 ^{-®} short term "tracking" 5.0×10 ⁻⁷ /day long term "flywheeling"	
Real-time clock (RTC)	Battery backed time and year information	
PCI specification	2.2 compliant 2.3 compatible PCI-X compatible	
Size	Single-width (4.2" × 6.875")	
Device type	PCI target, 32-bit, universal signaling	
Data transfer	8-bit, 32-bit	
Interrupt levels	Automatically assigned (PnP)	
Power	12V at 50 mA TCXO: 5V at 700 mA	
Connector	· ·	
Firmware update port	6-pin, PS2 mini-DIN J2	
Timing I/O	15-pin 'DS' J1	
Environmental		
Temperature		
Operating	0 °C to 65 °C	
Storage	-30 °C to +85 °C	
Humidity	· ·	
Operating	5% to 95% non-condensing	
Certifications		
FCC	Part 15, Subpart B.	
	Emissions EN 55022	
Immunity	EN 55024	
RoHS compliance		
EU RoHS 6/6 China RoHS		

Pin Description

Pin	Direction	Signal	
1	Input	External 10 MHZ	
2		Ground	
3	Output	Strobe	
4	Output	1PPS	
5	Output	Time code (AM)	
6	Input	External event	
7	Input	Time code (AM)	
8		Ground	
9	Output	Oscillator control voltage	
10	Input	Time code (DCLS)	
11	Output	Time code (DCLS)	
12		Ground	
13	Output	1, 5, or 10MPPS	
14	Input	External 1PPS	
15	Output	Heartbeat/DDS	

Pin Diagram

Standard Cover Panels

Software

the 32/64-bit versions of Windows and Linux, and 64-bit Solaris. Included are test application programs with source code so that you can review the bc635PCle card status and adjust board configuration and output parameters. Each SDK includes an extensive list of function calls to quickly and easily integrate the bc635PCle card into your target environment. For Windows, an additional clock utility program, TrayTime, is provided that can be used to automatically update the host computer's clock.

The bc635PCIe firmware is easily field-upgradeable. Control Panel Interface

1		Stacry Flags	
Status © Tracking © Phase © Frequency	r.		Interrupts © Event © HeartDeat © Strabe © 1PPS © Data Pist © Event2 © Event2
т	ime	Cod	e
Thu	Sep	10	2009
			50740

Additional Features

This product also includes a bc635PCI-V2 time and frequency processor board, standard height cover panel, one-year warranty and an insert sheet that explains how to download the user guide and SDK/driver software.

Ordering Information

Part Number: bc635PCI-V2 PCI time and frequency processor

Connector accessories that can be ordered:

- D connector to x5-BNCs adapter (provides TC in, TC out, 1PPS out, event in, periodic out) p/n BC11576-1000
- D connector to x5-BNCs adapter with 1PPS in (provides TC in, TC out, 1PPS in, 1PPS out, event in) p/n BC11576-9860115
- D connector to x6-BNCs adapter (provides TC in, TC out, 1PPS in, 1PPS out, event in, DCLS out) p/n PCI-BNC-CCS

For GPS synchronization, see bc637PCI-V2 PCI Express Time and Frequency Processor datasheet.

Growing While Empowering

203, Ansal Chamber-II, 6, Bhikaji Cama Place, New Delhi-110066

+91 11 26700500/26103358 +91 11 26183229 +91-9212605204

marketing@savitritelecom.com

@2022 Savitri Telecom Services Product specifications and descriptions in this document are subject to change without notice. @1022STSACds-bc635PCI-V2-001